Return to ENVRI Community Home![]()
Please provide your feedback on this Science Demonstrator using the questionnaire at https://survey2.icos-cp.eu/ENVRIplus-evaluator!
For the scientific community in aerosol sciences that studies atmospheric new particle formation events (NPFEs), this service aims to prototype how the scientific community can be deeply integrated with interoperable Research Infrastructures and e-Infrastructures (unless specified otherwise henceforth referred to as infrastructures). The result is a knowledge infrastructure[1] i.e., a robust network of scientists, artefacts such as virtual research environments and research data, and institutions such as research infrastructures and e-Infrastructures that acquire, maintain and share scientific knowledge about the natural world.
...
Figure 2 provides an overview of the architectural design of the service implementation. Researchers access JupyterLab operated on the EGI e-Infrastructure (provided by WP9) in order to analyse primary data for the purpose of new particle formation event detection and description. JupyterLab is accessible from the corresponding D4Science Virtual Research Environment(VRE). Having cloned the required Jupyter Notebookfrom GitHub, researchers can start to analyse primary data to detect and describe new particle formation events.
The analysis consists of two main steps. Both are implemented as D4Science Data Miner algorithms and are accessed from within the Jupyter Notebook, programmatically via a WPS (OGC Web Process Service) interface. Given a day and place, as configured by the researcher, the first step fetches and visualizes primary data. The primary data are published by SmartSMEAR, a “data visualization and download tool for the database of continuous atmospheric, flux, soil, tree physiological and water quality measurements at SMEAR research stations of the University of Helsinki.” SmartSMEAR is developed and provided in collaboration with CSC (https://www.csc.fi/home), the Finnish national supercomputing center, who also host the SMEAR data. SmartSMEAR is thus an (software) artifact of the SMEAR(Station for Measuring Ecosystem-Atmosphere Relations) research infrastructure (RI). SmartSMEAR provides an API for data access. The primary data can thus be fetched and loaded into Python data structures in a programmatic manner.
...
Naturally, the demonstrator is first and foremost of primary interest to a specific scientific community, namely the one consisting of the various aerosol research groups that study new particle formation events. To the best of our knowledge, the globally most renown research group in this area is the one led by Prof. Markku Kulmala at University of Helsinki[7]. Prof. Kulmala and some of the postdocs in his group have been involved in the developments of this demonstrator. Most importantly, postdocs have been actively involved in the development of a conceptualization of new particle formation events and a corresponding concept of the Environment Ontology. Naturally, in its current stage the demonstrator is a prototype to showcase to the scientific and infrastructure communities what is possible using state of the art interoperable infrastructures. A transition in practice from how data analysis is currently done to such infrastructures as demonstrated here requires further work as well as further acceptance by the scientific community. While we think to have reached an important milestone with this demonstrator, we cannot claim to know if and when such a transition will occur, for this scientific community or beyond. Clearer is, however, the imperative of the transition toward a practice as delineated by this demonstrator.
위젯 연결기
...
...
...
...
...