Return to ENVRI Community Home![]()
...
Following the guidence of the Model Overview#ENVRI_ENVRI Common _ Subsystem the EPSO EPOS design issues can be broken down as follows:
...
Data acquisition is performed by EPOS' constituent 'client' infrastructures; existing monitoring networks and laboratories, collected by data centres and presented for discovery and access to the EPOS integration layer. Many of these client systems operate in real-time (for example the continuous data streams produced by seismograph networks), requiring concurrently active data curation facilities (storage, persistent identification and metadata assignment).
...
Data is principally curated within existing data centres that publish their datasets according to some agreed protocol. These data centres have their own data collection policies, but EPOS intends to promote the adoption of common metadata in order to ease interoperation, based on a three-level model consisting of discovery metadata (using extended qualified Dublin Core) which is derived from contextual metadata (using CERIF, the Common European Research Information Format), which points to detailed metadata (domain-specific and associated with a particular service or resource). EPOS will also provide a global persistent identification mechanism for continuous data streams and discrete datasets (the latter possibly using the mechanisms produced by the EUDAT project).
...
...
Given global persistent identification and metadata, as well as the use where possible of standard data formats, it is intended that tools be produced to search over and extract specific datasets from different sites based on geospatial (and other) requirements. This along with tools for modelling, processing, data mining and visualisation form the data-oriented integration layer of the EPOS Core Services. These sit atop the 'thematic layer' of the Services, which divide services by domain and forms (for example seismology, volcanology and geodesy as well as satellite data, hazard maps, geomagnetic observatories and rock physics laboratories).
...
EPOS also intends to provide access for researchers to high-performance computation facilities as provided by such infrastructure projects as PRACE.
...
EPOS intends to provide training facilities to its research demographic; it is as yet unclear if EPOS intends to provide any kind of 'social' aspect to its core services (annotation of datasets, record of individual researchers' interactions with the infrastructure, etc.). It is a goal however of EPOS to promote best practices and reward participation, as well as to increase the visibility of research results produced using EPOS services. This implies that community support will become an increasingly important aspect of the EPOS infrastructure as the basic integration challenge it faces becomes solved.
...